login
A381030
Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes.
4
1, 2, 2, 2, 4, 5, 3, 11, 20, 12, 3, 17, 60, 68, 35, 4, 32, 151, 302, 289, 108, 4, 45, 322, 955, 1523, 1151, 369, 5, 71, 633, 2617, 5942, 7384, 4792, 1285, 5, 94, 1132, 6179, 19061, 33819, 35188, 19603, 4655, 6, 134, 1930, 13374, 52966, 125940, 184938, 164036, 80820, 17073, 6, 170, 3095, 26567, 131717, 400119, 778318, 969972
OFFSET
2,2
COMMENTS
(n,k)-polyominoes are disconnected polyominoes with n visible squares and k transparent squares. Importantly, k must be the least number of transparent squares that need to be converted to visible squares to make all the visible squares connected. Note that a regular polyomino of order n is a (n,0)-polyomino, since all its visible squares are already connected. For more details see the paper by Kamenetsky and Cooke.
Note that, in this sequence, 2 different sets of the same number of transparent squares that connect in distinct ways the same set of visible squares, count as 1. E.g. these 2 different formations count as 1:
XO XOO
OX X
LINKS
Dmitry Kamenetsky and Tristrom Cooke, Tiling rectangles with holey polyominoes, arXiv:1411.2699 [cs.CG], 2015.
FORMULA
First row, a(2,k) = floor((k+3)/2).
EXAMPLE
The table begins as follows:
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+------------------------------------------------------------------
2| 1 2 2 3 3 4 4 5 5 6 6
3| 2 4 11 17 32 45 71 94 134 170
4| 5 20 60 151 322 633 1132 1930 3095
5| 12 68 302 955 2617 6179 13374 26567
6| 35 289 1523 5942 19061 52966 131717
7| 108 1151 7384 33819 125940 400119
8| 369 4792 35188 184938 778318
9| 1285 19603 164036 969972
10| 4655 80820 753310
11| 17073 331373
12| 63600
CROSSREFS
Cf. A381057.
Columns 0..4: A000105, A286344, A286194, A286345.
Sequence in context: A299204 A230141 A151680 * A231351 A024681 A240327
KEYWORD
nonn,tabl,new
AUTHOR
John Mason, Feb 12 2025
STATUS
approved