login
A380832
Number of points in Z^4 of norm <= n where the sum of the four entries is even.
1
1, 1, 49, 169, 625, 1465, 3337, 5689, 10009, 15937, 24865, 35761, 51265, 69817, 94849, 124009, 161497, 204529, 260137, 320497, 394705, 478705, 577489, 687913, 819313, 960457, 1127785, 1309153, 1517161, 1742497, 2001505, 2273473, 2585905, 2920009, 3297337, 3700153, 4144105, 4618657, 5145865, 5703073
OFFSET
0,3
COMMENTS
Points in Z^4 with even sum of entries forms the D_4 lattice. That is to say, the sequence is the "ball" pattern on D_4 lattice.
a(n) == 1 (mod 24).
EXAMPLE
a(2) = 49, because in the ball with radius 2, there is 1 point (0,0,0,0), 8 points similar to (0,0,0,2), 24 points similar to (0,0,1,1), and 16 points similar to (1,1,1,1).
PROG
(Python) # See Steven Lu's link
(PARI) a(n) = sum(x=-n, n, sum(y=-n, n, sum(z=-n, n, sum(t=-n, n, (((x+y+z+t) % 2)==0) && (x^2+y^2+z^2+t^2 <=n^2))))); \\ Michel Marcus, Feb 09 2025
CROSSREFS
Cf. A055410.
Sequence in context: A147608 A258060 A039686 * A038628 A244695 A244179
KEYWORD
nonn,new
AUTHOR
Steven Lu, Feb 05 2025
STATUS
approved