login
A380674
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-x * (1 - x)^2) ).
2
1, 3, 25, 370, 8097, 237096, 8733601, 388380000, 20253654945, 1212334652800, 81937521020841, 6172429566120192, 512850795552978625, 46594245206418954240, 4595466275857015549425, 488993161791784338804736, 55839856392986843905585089, 6811561624203525171739852800
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 - x*A(x))^2)/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*n-3*k+1,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*n-3*k+1, n-k)/k!);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 30 2025
STATUS
approved