login
A380639
Expansion of e.g.f. exp(x/(1 - 2*x)^2).
1
1, 1, 9, 97, 1297, 20961, 398041, 8678209, 213337377, 5830560577, 175187949481, 5734893998241, 203021979225649, 7724154592735777, 314158263983430777, 13597375157683820161, 623802598335834369601, 30228101725367033318529, 1542430410234859308052297
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} 2^k * binomial(2*n-k-1,k)/(n-k)!.
E.g.f.: exp( Sum_{k>=1} k * 2^(k-1) * x^k ).
a(n) ~ 2^n * n^(n - 1/6) / (sqrt(3) * exp(n - 3*n^(2/3)/2 + 1/24)). - Vaclav Kotesovec, Jan 29 2025
PROG
(PARI) a(n) = n!*sum(k=0, n, 2^k*binomial(2*n-k-1, k)/(n-k)!);
CROSSREFS
Cf. A082579.
Sequence in context: A194725 A218500 A293986 * A123821 A145509 A098782
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 28 2025
STATUS
approved