login
A380638
Expansion of e.g.f. exp(x*G(4*x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
0
1, 1, 33, 2209, 226753, 31555521, 5557183201, 1185423664993, 297171500140929, 85638231765516673, 27896677183469054881, 10137203757416219332641, 4065668625283435566910273, 1783936343221839549449049409, 850091650335726912762794748513, 437197222292805469886634467693281
OFFSET
0,3
FORMULA
E.g.f.: exp( (G(4*x)-1)/4 ), where G(x) is described above.
a(n) = (n-1)! * Sum_{k=0..n-1} 4^k * binomial(4*n,k)/(n-k-1)! for n > 0.
a(n+1) = 4^n * n! * LaguerreL(n, 3*n+4, -1/4).
a(n) ~ 2^(10*n - 1) * n^(n-1) / (3^(3*n + 3/2) * exp(n - 1/12)). - Vaclav Kotesovec, Jan 29 2025
a(n) = (-4)^(n-1)*U(1-n, 2+3*n, -1/4), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 29 2025
PROG
(PARI) a(n) = if(n==0, 1, 4^(n-1)*(n-1)!*pollaguerre(n-1, 3*n+1, -1/4));
CROSSREFS
Sequence in context: A267672 A283533 A294773 * A294611 A294954 A372903
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2025
STATUS
approved