login
A380611
Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r.
0
1, 1, 3, 1, 10, 16, 1, 35, 135, 40, 45, 1, 126, 896, 875, 756, 375, 96, 1, 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1, 1716, 28512, 90552, 74250, 65856, 257250, 48000, 74088, 55566, 102900, 8100, 10976, 5488, 288, 1, 6435, 147147, 686400, 567567, 931392, 3244032, 606375, 194040, 2910600, 1448832, 2673000, 202125, 666792, 846720, 1029000, 491520, 19845, 24696, 65856, 14400, 441, 1
OFFSET
0,3
COMMENTS
Partitions are generated in reverse lexicographic order.
Remark that A262030 uses Abramowitz-Stegun (A-St) order.
Sum of row r equals r^r for r > 0 (Robinson-Schensted correspondence).
EXAMPLE
Triangle begins:
1;
1;
3, 1;
10, 16, 1;
35, 135, 40, 45, 1;
126, 896, 875, 756, 375, 96, 1;
462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1;
...
Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4.
MATHEMATICA
Needs["Combinatorica`"];
hooklength[par_?PartitionQ]:=Table[Count[par, q_/; q>=j]+1-i+par[[i]]-j, {i, Length[par]}, {j, par[[i]]}];
countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]];
content[par_?PartitionQ]:=Table[j-i, {i, Length[par]}, {j, par[[i]]}];
countSSYT[par_?PartitionQ, t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]);
Table[countSYT[par] countSSYT[par, n], {n, 8}, {par, IntegerPartitions[n]}]
CROSSREFS
Row sums give A000312.
Row lengths give A000041.
Leftmost column gives A088218.
Sequence in context: A212930 A225725 A095327 * A225753 A210725 A048953
KEYWORD
nonn,tabf,new
AUTHOR
Wouter Meeussen, Jan 28 2025
STATUS
approved