login
A380607
a(0) = 1, a(n) = 5*binomial(6*(n-1),n-1), for n > 0.
0
1, 5, 30, 330, 4080, 53130, 712530, 9738960, 134891640, 1886744970, 26589681300, 376970137830, 5370413979840, 76816421507280, 1102478371452150, 15868672192650600, 228978369822304080, 3311260421942706570
OFFSET
0,2
FORMULA
a(n) = 5*A004355(n-1), for n>=1.
G.f.: h(z) = 5*z*hypergeom([1/6, 1/3, 1/2, 2/3, 5/6], [1/5, 2/5, 3/5, 4/5], (6^6*z)/5^5) + 1
satisfies: 15625*z^6 - 75000*z^5 + 140625*z^4 - 125000*z^3 + 46875*z^2 + 46656*z - 3125 + (75000*z^5 - 281250*z^4 + 375000*z^3 - 187500*z^2 - 279936*z + 18750)*h(z) + (140625*z^4 - 375000*z^3 + 281250*z^2 + 699840*z - 46875)*h(z)^2 + (125000*z^3 - 187500*z^2 - 933120*z + 62500)*h(z)^3 + (46875*z^2 + 699840*z - 46875)*h(z)^4 + (-279936*z + 18750)*h(z)^5 + (46656*z - 3125)*h(z)^6 = 0.
a(n) = Integral_{x=0..sup} x^n*W(x), where sup = 6^6/5^5, with W(x) = (5^10)*sqrt(15)/((6^12)*sqrt(Pi) )*MeijerG([[],[-1,-9/5,-8/5,-7/5,-6/5]],[[-11/6,-5/3,-3/2,-4/3,-7/6],[]],x/(6^6/5^5)), n>0. In W(x) MeijerG is the Meijer G-function in Maple notation, which can be represented as the sum of five generalized hypergeometric functions of type 5F4. This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, sup). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is U-shaped, is singular at x = 0, with singularity x^(-1/6), and is singular at x = sup. W(x) has a minimum at x around x=11.
MATHEMATICA
CoefficientList[Series[5*z*HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6}, {1/5, 2/5, 3/5, 4/5}, (6^6*z)/5^5] + 1, {z, 0, 17}], z] (* Stefano Spezia, Jan 28 2025 *)
PROG
(PARI) a(n) = 0^n+binomial(6*(n-1), n-1)*5 \\ Thomas Scheuerle, Jan 29 2025
CROSSREFS
Cf. A004355.
Sequence in context: A277464 A258300 A276752 * A052172 A058783 A203769
KEYWORD
nonn,new
AUTHOR
Karol A. Penson, Jan 28 2025
STATUS
approved