login
A380567
a(n) = k the least number for which k^6 is n digits long and the sum of digits of k^6 is the maximum possible for a 6th power of that length (A373994(n)).
1
1, 2, 3, 4, 6, 7, 12, 16, 23, 46, 64, 96, 143, 202, 277, 461, 547, 977, 1194, 2136, 2896, 3707, 5762, 9763, 13817, 16474, 25847, 43693, 51967, 72539, 121624, 172988, 271427, 463976, 681017, 751204, 1387617, 1732027, 3018897, 3515477, 6765526, 9258023
OFFSET
1,2
LINKS
EXAMPLE
a(11) = 64 because among all 11-digit sixth powers (47^6-68^6), 64^6=68719476736 and 68^6=98867482624 have the maximum sum of digits, 96 = A373994(11) and 64 is the least number.
MATHEMATICA
a[n_]:=Module[{s=Ceiling[10^((n-1)/6)], max=0}, For[k=s, k<=Floor[(10^n-1)^(1/6)], k++, t=Total@IntegerDigits[k^6]; If[t>max, s=k; max=t]]; s]; Table[a[n], {n, 36}]
CROSSREFS
KEYWORD
nonn,base,new
AUTHOR
Zhining Yang, Jan 26 2025
STATUS
approved