login
A380369
Triangle read by rows: T(n,k) is the number of open meanders with 2n crossings and k exterior top arches, 0 <= k <= n.
2
1, 0, 1, 0, 2, 1, 0, 7, 6, 1, 0, 36, 32, 12, 1, 0, 221, 202, 94, 20, 1, 0, 1530, 1417, 728, 220, 30, 1, 0, 11510, 10752, 5854, 2090, 445, 42, 1, 0, 92114, 86554, 48942, 19300, 5160, 812, 56, 1, 0, 773259, 729716, 423778, 178478, 54758, 11396, 1372, 72, 1, 0, 6743122, 6384353, 3781926, 1669062, 561514, 138866, 23072, 2184, 90, 1
OFFSET
0,5
LINKS
FORMULA
A077056(n) = Sum_{k=1..n} k*T(n,k).
T(n,1) = A006660(2*n + 1).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 7, 6, 1;
0, 36, 32, 12, 1;
0, 221, 202, 94, 20, 1;
0, 1530, 1417, 728, 220, 30, 1;
0, 11510, 10752, 5854, 2090, 445, 42, 1;
0, 92114, 86554, 48942, 19300, 5160, 812, 56, 1;
...
The T(2,1) = 2 open meanders are:
__ __
/ \ / \
... / /\ \.. .. / /\ \ ...
/ / \/ \/ \ \
The T(2,2) = 1 open meander is:
... /\../\ ...
/ \/ \
CROSSREFS
Row sums are A077054.
Main diagonal is A000012.
Second diagonal is A002378.
Cf. A005316, A006660 (bisection gives column 1), A077056 (total number of exterior top arches), A259689 (for semi-meanders), A259974.
Sequence in context: A316135 A327620 A325872 * A021896 A188835 A217735
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 01 2025
STATUS
approved