login
A380274
Sum of cubes of coefficients of q in the q-factorials.
2
1, 1, 2, 18, 522, 34986, 4524240, 1003172616, 351349509504, 182985164256000, 135303274820730372, 136936922140937021688, 184146557651652262521738, 321051865325352021467189658, 710866983641078174204266934736, 1964068265459581480020247325821224
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, q-Factorial.
FORMULA
a(n) = Sum_{k>=0} A008302(n,k)^3.
Conjecture: a(n) ~ 6*sqrt(3) * n!^3 / (Pi * n^3).
EXAMPLE
a(4) = 1^3 + 3^3 + 5^3 + 6^3 + 5^3 + 3^3 + 1^3 = 522.
MATHEMATICA
Table[Total[CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n-1}]], x]^3], {n, 0, 15}]
PROG
(PARI) a(n) = my(v=Vec(prod(k=1, n, (1-q^k)/(1-q)))); sum(i=1, #v, v[i]^3); \\ Michel Marcus, Jan 18 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 18 2025
STATUS
approved