login
A380088
The largest unitary divisor of n that is a term in A207481.
4
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e if e <= p, and 1 otherwise.
a(n) = 1 if and only if n is in A054743.
a(n) < n if and only if n is in A185359.
a(n) = n if and only if n is in A207481.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (p^(2*(p+1)) + p^(2*p+1) - p^(p+1) - p^p + 1)/(p^(2*p+1) * (p+1)) = 0.87453068804586281444... .
MATHEMATICA
f[p_, e_] := If[e <= p, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] <= f[i, 1], f[i, 1]^f[i, 2], 1)); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 12 2025
STATUS
approved