login
A380090
The sum of the unitary divisors of n that are terms in A207481.
4
1, 3, 4, 5, 6, 12, 8, 1, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 4, 26, 42, 28, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 6, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 8, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90, 96
OFFSET
1,2
COMMENTS
First differs from A371242 at n = 27.
LINKS
FORMULA
a(n) = A034448(A380088(n)).
Multiplicative with a(p^e) = p^e + 1 if e <= p, and 1 otherwise.
a(n) = 1 if and only if n is in A054743.
a(n) < A034448(n) if and only if n is in A185359.
a(n) = A034448(n) if and only if n is in A207481.
a(n) = A377520(n) if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (p^(p+2) + p^(p+1) + p^p - p - 1)/(p^(p+1) * (p+1)) = 1.2078161... .
MATHEMATICA
f[p_, e_] := If[e <= p, p^e, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] <= f[i, 1], f[i, 1]^f[i, 2], 0) + 1); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 12 2025
STATUS
approved