login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380002
Decimal expansion of long/short edge length ratio of a pentagonal hexecontahedron.
0
1, 7, 4, 9, 8, 5, 2, 5, 6, 6, 7, 3, 6, 2, 0, 2, 7, 9, 1, 6, 7, 6, 4, 4, 6, 6, 9, 3, 6, 5, 5, 9, 2, 1, 1, 7, 9, 6, 4, 9, 8, 1, 5, 8, 1, 8, 5, 9, 0, 3, 7, 6, 0, 0, 4, 3, 8, 7, 8, 6, 1, 2, 6, 9, 7, 0, 3, 9, 8, 2, 5, 2, 6, 6, 0, 8, 4, 0, 1, 4, 5, 1, 4, 1, 4, 9, 0, 4, 5, 7
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Hexecontahedron.
FORMULA
Equals (1 + xi)/(2 - xi^2), where xi = A377849.
Equals the largest real root of 31*x^6 - 122*x^5 + 177*x^4 - 128*x^3 + 51*x^2 - 11*x + 1.
EXAMPLE
1.749852566736202791676446693655921179649815818590...
MATHEMATICA
First[RealDigits[(1 + #)/(2 - #^2) & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
First[RealDigits[1/Divide @@ PolyhedronData["PentagonalHexecontahedron", "EdgeLengths"], 10, 100]]
CROSSREFS
Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379890 (midradius), A379892 (dihedral angle), A380003 and A380004 (face internal angles).
Cf. A377849.
Sequence in context: A117028 A138282 A198572 * A155823 A195452 A103227
KEYWORD
nonn,cons,easy,new
AUTHOR
Paolo Xausa, Jan 11 2025
STATUS
approved