Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 06 2025 04:26:00
%S 6,432,145800,28934010000,36195844320916875,
%T 8087414520398390420149816875,
%U 14739121497834560950873288612087606246265625,24111787175394014554749263306909156210251310885835206605812890625,30311902674167553291682092445492621447523310843996437232420613554400185533411542126171875
%N Let M_n be the n X n matrix M_(i,j)=1/(3^i+3^j), then a(n) is the denominator of det(M_n).
%H Robert Israel, <a href="/A379913/b379913.txt">Table of n, a(n) for n = 1..20</a>
%e For n = 3, the determinant of the matrix [1/6, 1/12, 1/30; 1/12, 1/18, 1/36; 1/30, 1/36, 1/54] is 1/145800, so a(3) = 145800.
%p g:= proc(n) local M;
%p M:= Matrix(n,n,(i,j) -> 1/(3^i+3^j));
%p denom(LinearAlgebra:-Determinant(M))
%p end proc:
%p map(g, [$1..10]);
%o (PARI) a(n) = denominator(matdet(matrix(n, n, i, j, 1/(3^i+3^j)))); \\ _Michel Marcus_, Jan 06 2025
%Y Numerators are A069743.
%K nonn,new
%O 1,1
%A _Robert Israel_, Jan 06 2025