login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379913
Let M_n be the n X n matrix M_(i,j)=1/(3^i+3^j), then a(n) is the denominator of det(M_n).
2
6, 432, 145800, 28934010000, 36195844320916875, 8087414520398390420149816875, 14739121497834560950873288612087606246265625, 24111787175394014554749263306909156210251310885835206605812890625, 30311902674167553291682092445492621447523310843996437232420613554400185533411542126171875
OFFSET
1,1
LINKS
EXAMPLE
For n = 3, the determinant of the matrix [1/6, 1/12, 1/30; 1/12, 1/18, 1/36; 1/30, 1/36, 1/54] is 1/145800, so a(3) = 145800.
MAPLE
g:= proc(n) local M;
M:= Matrix(n, n, (i, j) -> 1/(3^i+3^j));
denom(LinearAlgebra:-Determinant(M))
end proc:
map(g, [$1..10]);
PROG
(PARI) a(n) = denominator(matdet(matrix(n, n, i, j, 1/(3^i+3^j)))); \\ Michel Marcus, Jan 06 2025
CROSSREFS
Numerators are A069743.
Sequence in context: A173760 A269882 A262013 * A028665 A231316 A270066
KEYWORD
nonn,new
AUTHOR
Robert Israel, Jan 06 2025
STATUS
approved