login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379637
Irregular triangle read by rows: T(n,k) is the sum of the widths of the free polyominoes with n cells and width k, n >= 1, 1 <= k <= ceiling(n/2).
0
1, 1, 1, 2, 1, 8, 1, 10, 18, 1, 24, 66, 1, 36, 213, 72, 1, 74, 579, 552, 1, 120, 1470, 2644, 365, 1, 234, 3663, 10188, 3845, 1, 400, 9033, 33668, 25945, 1530, 1, 758, 22179, 104656, 129600, 22458, 1, 1338, 54075, 312296, 544170, 192228, 6650, 1, 2500, 131541, 919524, 2041085, 1211736, 117733
OFFSET
1,4
COMMENTS
The width here is the shorter of the two dimensions.
FORMULA
T(n,k) = k*A379623(n,k).
EXAMPLE
Triangle begins:
1;
1;
1, 2;
1, 8;
1, 10, 18;
1, 24, 66;
1, 36, 213, 72;
1, 74, 579, 552;
1, 120, 1470, 2644, 365;
1, 234, 3663, 10188, 3845;
1, 400, 9033, 33668, 25945, 1530;
1, 758, 22179, 104656, 129600, 22458;
1, 1338, 54075, 312296, 544170, 192228, 6650;
1, 2500, 131541, 919524, 2041085, 1211736, 117733;
...
Illustration for n = 5:
The free polyominoes with five cells are also called free pentominoes.
For k = 1 there is only one free pentomino of width 1 as shown below, so T(5,1) = 1.
_
|_|
|_|
|_|
|_|
|_|
.
For k = 2 there are five free pentominoes of width 2 as shown below, hence the sum of the widths is 2 + 2 + 2 + 2 + 2 = 5*2 = 10, so T(5,2) = 10.
_ _ _
|_| _|_| _|_| _ _ _ _
|_| |_|_| |_|_| |_|_| |_|_|
|_|_ |_| |_| |_|_| |_|_
|_|_| |_| |_| |_| |_|_|
.
For k = 3 there are six free pentominoes of width 3 as shown below, hence the sum of the widths is 3 + 3 + 3 + 3 + 3 + 3 = 6*3 = 18, so T(5,3) = 18.
_ _ _ _ _ _ _ _ _ _
_|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_|
|_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_
|_| |_| |_|_|_| |_|_| |_| |_|_|
.
Therefore the 5th row of the triangle is [1, 10, 18].
.
CROSSREFS
Row lengths give A110654.
Row sums give A379626.
Sequence in context: A102208 A371650 A369779 * A125911 A009385 A008308
KEYWORD
nonn,tabf,new
AUTHOR
Omar E. Pol, Jan 16 2025
STATUS
approved