Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 28 2024 09:14:20
%S 1,1,1,2,1,1,2,2,1,2,1,1,3,2,2,1,2,1,1,2,3,4,2,1,1,1,1,3,1,1,1,2,2,1,
%T 4,4,3,1,1,3,1,1,1,2,3,1,1,2,2,4,1,2,1,3,4,1,2,6,1,3,1,3,1,1,2,1,1,1,
%U 1,2,1,4,2,2,1,2,3,1,4,2,1,1,2,1,1,3,4
%N Number of pairs (d, k/d), d < k/d, such that d|k, rad(d) = rad(k/d) = rad(k), but d|k/d, for k = A376936(n), where rad = A007947.
%C In other words, one half the number of coreful complementary divisor pairs (d, k/d), d|k, that do not divide one another, for k in A376936, the sequence of numbers k that have at least 1 such pair.
%C Divisors d and k/d are both composite, further, are neither squarefree nor prime powers, hence in A126706.
%H Michael De Vlieger, <a href="/A379552/b379552.txt">Table of n, a(n) for n = 1..10000</a>
%e Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Examples below show only (d, k/d) that have property Q:
%e a(1) = 1 since b(1) = 216 = 12*18.
%e a(2) = 1 since b(2) = 432 = 18*24.
%e a(3) = 1 since b(3) = 648 = 12*54.
%e a(4) = 2 since b(4) = 864 = 18*48 = 24*36.
%e a(14) = 3 since b(14) = 3456 = 18*192 = 36*96 = 48*72.
%e a(22) = 4 since b(22) = 7776 = 24*324 = 48*162 = 54*144 = 72*108, etc.
%t nn = 2^16;
%t rad[x_] := Times @@ FactorInteger[x][[All, 1]];
%t s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
%t Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
%t Table[k = s[[n]];
%t Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k],
%t _?(And[1 < GCD @@ {##},
%t rad[#1] == rad[#2],
%t Mod[#1, #2] != 0,
%t Mod[#2, #1] != 0] & @@ # &)], {n, Length[s]}]
%Y Cf. A007947, A126706, A376936, A379553, A379554.
%K nonn,easy,new
%O 1,4
%A _Michael De Vlieger_, Dec 25 2024