login
A379439
Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).
14
1, 2, 4, 1, 14, 6, 52, 40, 4, 248, 320, 76, 1416, 2946, 1395, 82, 9172, 29364, 24950, 4348, 66366, 309558, 427336, 160050, 7258, 518868, 3365108, 6987100, 4696504, 688976, 4301350, 37246245, 109761827, 118353618, 37466297, 1491629, 37230364, 416751008, 1668376886, 2675297588, 1512650776, 195728778
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..120 (rows 0..20)
Evgeniy Krasko and Alexander Omelchenko, Enumeration of Unsensed Orientable Maps on Surfaces of a Given Genus, arXiv:1712.10139 [math.CO], 2017, see Appendix Table 4.
FORMULA
T(n,k) = (A379438(n,k) + A380234(n,k))/2.
EXAMPLE
Triangle begins:
n\k [0] [1] [2] [3] [4]
[0] 1;
[1] 2;
[2] 4, 1;
[3] 14, 6;
[4] 52, 40, 4;
[5] 248, 320, 76;
[6] 1416, 2946, 1395, 82;
[7] 9172, 29364, 24950, 4348;
[8] 66366, 309558, 427336, 160050, 7258;
[9] 518868, 3365108, 6987100, 4696504, 688976;
CROSSREFS
Row sums are A214816.
Cf. A269919 (rooted), A379438 (sensed), A380234 (achiral), A380235.
Sequence in context: A184176 A163546 A380234 * A379438 A172385 A081538
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Jan 16 2025
STATUS
approved