login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379357
Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).
2
1, 4, 5, 11, 13, 41, 47, 122, 259, 269, 299, 152, 167, 172, 59, 4, 13, 79, 85, 43, 44, 5, 16, 161, 83, 254, 517, 29, 92, 833, 878, 6191, 6296, 6401, 6506, 26129, 27389, 27809, 28229, 5671, 5923, 5951, 6203, 6245, 6287, 6371, 6623, 33199, 33829, 34039, 34459, 34669
OFFSET
1,2
REFERENCES
Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.
LINKS
Aleksandar Ivić, On the asymptotic formulae for some functions connected with powers of the zeta-function, Matematički Vesnik, Vol. 1 (14) (29) (1977), pp. 79-90.
FORMULA
a(n) = numerator(Sum_{k=1..n} 1/A007425(k)).
a(n)/A379358(n) = Sum_{i=1..N} b_i * n / log(n)^(i-1/3) + O(n / log(n)^(N+1-1/3)), for any fixed N >= 1, where b_i are constants. The same formula holds (with different constants) for any Piltz function d_k(n), for k >= 2, when 1/3 is replaced by 1/k.
EXAMPLE
Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
MATHEMATICA
f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
PROG
(PARI) d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A007425, A061201, A104528, A379358 (denominators).
Sequence in context: A216562 A174009 A370980 * A039006 A191209 A262901
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 21 2024
STATUS
approved