login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379094
Numbers whose factors in the canonical prime factorization neither increase weakly nor decrease weakly.
0
60, 84, 90, 120, 126, 132, 156, 168, 180, 204, 228, 240, 252, 264, 270, 276, 280, 300, 312, 315, 336, 348, 350, 360, 372, 378, 408, 420, 440, 444, 456, 480, 492, 495, 504, 516, 520, 525, 528, 540, 550, 552, 560, 564, 585, 588, 594, 600, 616, 624, 630, 636, 650
OFFSET
1,1
COMMENTS
A379097 is a subsequence.
From Michael De Vlieger, Dec 18 2024: (Start)
Proper subset of A126706.
Smallest powerful number is a(314) = 2700. (End)
LINKS
EXAMPLE
60 is a term because the factors in the canonical prime factorization are [4, 3, 5], a list that is neither increasing nor decreasing.
Primorials (A002110) are not terms of this sequence.
MAPLE
with(ArrayTools):
fact := n -> local p; [seq(p[1]^p[2], p in ifactors(n)[2])]:
isA379094 := proc(n) local f; f := fact(n);
is(not IsMonotonic(f, direction=decreasing, strict=false) and not IsMonotonic(f, direction=increasing, strict=false)) end:
select(isA379094, [seq(1..650)]);
MATHEMATICA
Select[Range[650], Function[f, NoneTrue[{Sort[f], ReverseSort[f]}, # == f &]][Power @@@ FactorInteger[#]] &] (* Michael De Vlieger, Dec 18 2024 *)
PROG
(PARI) is_a379094(n) = my(C=apply(x->x[1]^x[2], Vec(factor(n)~))); vecsort(C)!=C && vecsort(C, , 4)!=C \\ Hugo Pfoertner, Dec 18 2024
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Peter Luschny, Dec 17 2024
STATUS
approved