OFFSET
1,1
COMMENTS
These are the positive integers k such that the ring of integers O_K of the simplest cubic field K = Q[x]/(x^3 - k*x^2 - (k+3)*x - 1) does not have a power integral basis of the form {1, a, a^2} for any element a in O_K.
LINKS
D. Gil-Muñoz and M. Tinková, Additive structure of non-monogenic simplest cubic fields, arXiv:2212.00364 [math.NT], 2022.
T. Kashio and R. Sekigawa, The characterization of cyclic cubic fields with power integral bases, Kodai Math. J. 44 (2021), no. 2, 290-306.
D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
PROG
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Robin Visser, Dec 13 2024
STATUS
approved