login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: row n lists all positive m such that sigma(m) divides n, where sigma is the sum-of-divisors function (A000203).
0

%I #22 Dec 12 2024 15:12:28

%S 1,1,1,2,1,3,1,1,2,5,1,4,1,3,7,1,2,1,1,1,2,3,5,6,11,1,9,1,4,13,1,2,8,

%T 1,3,7,1,1,2,5,10,17,1,1,3,19,1,2,4,1,1,1,2,3,5,6,7,11,14,15,23,1,1,9,

%U 1,2,1,3,4,12,13,1,1,2,5,8,29,1,16,25,1,3,7,21,31

%N Irregular triangle read by rows: row n lists all positive m such that sigma(m) divides n, where sigma is the sum-of-divisors function (A000203).

%H Paolo Xausa, <a href="/A378912/b378912.txt">Table of n, a(n) for n = 1..10634</a> (rows 1..2000 of triangle, flattened).

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F T(n,k) <= n (see A319068).

%e Triangle begins:

%e n\k| 1 2 3 4 5 6 ...

%e -------------------------------

%e 1 | 1;

%e 2 | 1;

%e 3 | 1, 2;

%e 4 | 1, 3;

%e 5 | 1;

%e 6 | 1, 2, 5;

%e 7 | 1, 4;

%e 8 | 1, 3, 7;

%e 9 | 1, 2;

%e 10 | 1;

%e 11 | 1;

%e 12 | 1, 2, 3, 5, 6, 11;

%e 13 | 1, 9;

%e 14 | 1, 4, 13;

%e 15 | 1, 2, 8;

%e 16 | 1, 3, 7;

%e 17 | 1;

%e 18 | 1, 2, 5, 10, 17;

%e 19 | 1;

%e 20 | 1, 3, 19;

%e ...

%t With[{nmax = 50}, Table[PositionIndex[Divisible[n, #[[;; n]]]][True], {n, nmax}] & [DivisorSigma[1, Range[nmax]]]]

%o (PARI) row(n) = select(x->(!(n % sigma(x))), [1..n]); \\ _Michel Marcus_, Dec 11 2024

%Y Cf. A074754 (row lengths), A319068 (right border), A378913 (row sums).

%Y Cf. A000203.

%K nonn,tabf,new

%O 1,4

%A _Paolo Xausa_, Dec 10 2024