login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378887
a(n) = gcd(n, A001511(n)).
2
1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1
OFFSET
1,2
LINKS
FORMULA
a(n) = A378888(2*n) = gcd(2*n, A007814(2*n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) = 1.62390224555724623579..., where d(k) = Sum_{m>=0} phi(2*m+1)/((2*m+1)*odd(k)*2^(k*(2*m+1))) is the asymptotic density of the occurrences of k in this sequence, phi(k) = A000010(k) is the Euler totient function, and odd(k) = A000265(k) is the odd part of k. Equivalently, the asymptotic mean is Sum_{m>=0} (phi(2*m+1)/(2*m+1)) * Sum_{k>=1} 1/2^(k*(2*m+1)-v_2(k)), where v_2(k) = A007814(k).
MATHEMATICA
a[n_] := GCD[n, IntegerExponent[n, 2] + 1]; Array[a, 100]
PROG
(PARI) a(n) = gcd(n, valuation(n, 2) + 1);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Dec 10 2024
STATUS
approved