login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378863
Prime numbers that yield a sphenic number when any digit is removed.
1
55511, 333337, 333383, 558533, 558587, 575651, 581557, 660557, 669937, 727777, 782861, 811037, 822389, 874477, 905551, 961663, 997699, 1116943, 1222271, 1302277, 1748189, 1766137, 1866677, 1999111, 2222333, 2289943, 2441111, 2444437, 2542229, 2575277, 2744699
OFFSET
1,1
COMMENTS
The smallest prime with this property is 55511. Since being primes, the terms of this sequence end in 1, 3, 7 or 9. Unlike A371879, the penultimate digit can be 0. For example, 3388907 is a term whose penultimate digit is 0.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
55511 is a term, because it is a prime number such that if the 5 is removed, the result is 5511 = 3 * 11 * 167, while if the 1 is removed, the result is 5551 = 7 * 13 * 61.
MATHEMATICA
sphenicQ[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1}; q[n_] := AllTrue[FromDigits@ Drop[IntegerDigits[n], {#}] & /@ Range[IntegerLength[n]], sphenicQ]; Select[Prime[Range[200000]], q] (* Amiram Eldar, Dec 09 2024 *)
PROG
(PARI) has(n)=my(d=digits(n), t=2^#d-1); if(factor(fromdigits(vecextract(d, t-1)))[, 2]!=[1, 1, 1]~, return(0)); for(i=1, #d-1, if(d[i]==d[i+1], next); if(factor(fromdigits(vecextract(d, t-1<<i)))[, 2]!=[1, 1, 1]~, return(0))); 1
select(has, primes(10^6)) \\ Charles R Greathouse IV, Dec 09 2024
CROSSREFS
Sequence in context: A217692 A061740 A184094 * A345621 A346339 A345636
KEYWORD
nonn,base
AUTHOR
Gonzalo Martínez, Dec 09 2024
STATUS
approved