login
A378824
Decimal expansion of the volume of a pentagonal icositetrahedron with unit shorter edge length.
5
3, 5, 6, 3, 0, 2, 0, 2, 0, 1, 2, 0, 7, 1, 2, 8, 3, 2, 2, 3, 9, 6, 7, 7, 4, 1, 6, 3, 5, 1, 9, 6, 3, 6, 9, 0, 3, 5, 3, 8, 6, 6, 9, 1, 5, 2, 1, 8, 6, 4, 6, 1, 7, 7, 5, 8, 4, 3, 8, 4, 6, 6, 6, 0, 6, 6, 9, 5, 8, 4, 6, 7, 4, 7, 4, 0, 6, 1, 5, 3, 0, 1, 0, 9, 8, 8, 4, 0, 5, 6
OFFSET
2,1
COMMENTS
The pentagonal icositetrahedron is the dual polyhedron of the snub cube.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Icositetrahedron.
FORMULA
Equals 4*(1 + s)^3*(2 + 3*s)*sqrt(1 - 2*s)/((1 + s)*(1 - 4*s^2)), where s = (A058265 - 1)/2.
Equals the positive real root of x^6 - 1269*x^4 - 649*x^2 - 121.
EXAMPLE
35.63020201207128322396774163519636903538669152186...
MATHEMATICA
First[RealDigits[Root[#^6 - 1269*#^4 - 649*#^2 - 121 &, 2], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["PentagonalIcositetrahedron", "Volume"], 10, 100]]
CROSSREFS
Cf. A378823 (surface area), A378825 (inradius), A378826 (midradius), A378827 (dihedral angle).
Cf. A377603 (volume of a snub cube with unit edge length).
Cf. A058265.
Sequence in context: A152713 A218802 A378705 * A236101 A203802 A306554
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 09 2024
STATUS
approved