login
A378823
Decimal expansion of the surface area of a pentagonal icositetrahedron with unit shorter edge length.
5
5, 4, 7, 9, 6, 5, 4, 9, 4, 3, 8, 6, 5, 9, 6, 9, 3, 3, 9, 7, 6, 3, 5, 0, 2, 3, 1, 5, 2, 5, 9, 0, 1, 9, 0, 9, 0, 8, 7, 0, 8, 6, 4, 4, 3, 9, 8, 5, 2, 3, 7, 0, 6, 8, 8, 8, 2, 1, 3, 8, 0, 5, 9, 7, 0, 3, 6, 8, 0, 1, 7, 8, 0, 1, 1, 5, 2, 1, 6, 8, 3, 8, 7, 4, 3, 0, 0, 5, 7, 8
OFFSET
2,1
COMMENTS
The pentagonal icositetrahedron is the dual polyhedron of the snub cube.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Icositetrahedron.
FORMULA
Equals 24*(1 + s)^2*(2 + 3*s)/(1 + 2*s)*sqrt((1 - s)/(1 + s)), where s = (A058265 - 1)/2.
Equals the positive real root of x^6 - 3060*x^4 + 185328*x^2 - 39517632.
EXAMPLE
54.79654943865969339763502315259019090870864439852...
MATHEMATICA
First[RealDigits[Root[#^6 - 3060*#^4 + 185328*#^2 - 39517632 &, 2], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["PentagonalIcositetrahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A378824 (volume), A378825 (inradius), A378826 (midradius), A378827 (dihedral angle).
Cf. A377602 (surface area of a snub cube with unit edge length).
Cf. A058265.
Sequence in context: A333203 A340705 A252666 * A245073 A021650 A141269
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 09 2024
STATUS
approved