login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378801
G.f. A(x) satisfies A(x) = ( 1 + x/(1 - x*A(x)^(2/3)) )^3.
4
1, 3, 6, 16, 48, 153, 511, 1761, 6219, 22383, 81804, 302766, 1132475, 4274166, 16256685, 62249167, 239772510, 928398831, 3611539758, 14107963848, 55318781982, 217652858539, 859027927911, 3400055112777, 13492710661658, 53673238384560, 213984657134418
OFFSET
0,2
FORMULA
G.f. A(x) satisfies A(x) = 1 + x * (1 + A(x)^(1/3) + A(x)^(5/3)).
G.f.: A(x) = (1 + x*B(x))^3 where B(x) is the g.f. of A161634.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=3, s=1, t=0, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 09 2024
STATUS
approved