login
A378796
Number of minimal edge cuts in the n-sun graph.
2
1, 6, 15, 44, 125, 370, 1099, 3288, 9849, 29534, 88583, 265732, 797173, 2391498, 7174467, 21523376, 64570097, 193710262, 581130751, 1743392220, 5230176621, 15690529826, 47071589435, 141214768264, 423644304745, 1270932914190, 3812798742519, 11438396227508, 34315188682469, 102945566047354
OFFSET
1,2
COMMENTS
The sequence has been extended to n=1 using the formula. - Andrew Howroyd, Dec 12 2024
LINKS
Eric Weisstein's World of Mathematics, Minimal Edge Cut.
Eric Weisstein's World of Mathematics, Sun Graph.
FORMULA
a(n) = (3^n + (-1)^n)/2 + n - 1 = A046717(n) + n - 1. - Andrew Howroyd, Dec 12 2024
G.f.: x*(-1-2*x+7*x^2)/((-1+x)^2*(-1+2*x+3*x^2)). - Eric W. Weisstein, Dec 18 2024
E.g.f.: exp(x)*(cosh(2*x) - 1 + x). - Stefano Spezia, Dec 19 2024
MATHEMATICA
Table[((-1)^n + 3^n + 2 n - 2)/2, {n, 20}]
LinearRecurrence[{4, -2, -4, 3}, {1, 6, 15, 44}, 20]
CoefficientList[Series[(-1 - 2 x + 7 x^2)/((-1 + x)^2 (-1 + 2 x + 3 x^2)), {x, 0, 20}], x]
PROG
(PARI) a(n) = (3^n + (-1)^n)/2 + n - 1 \\ Andrew Howroyd, Dec 12 2024
CROSSREFS
Sequence in context: A272320 A137806 A193449 * A197160 A182420 A117961
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 07 2024
EXTENSIONS
a(1)-a(2) prepended and a(7) onwards from Andrew Howroyd, Dec 12 2024
STATUS
approved