login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator(Sum_{k=1..n} 1/P(k)), where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.
2

%I #6 Dec 06 2024 11:29:44

%S 1,2,6,3,15,15,105,210,70,70,770,2310,30030,30030,30030,15015,255255,

%T 255255,4849845,4849845,4849845,4849845,111546435,37182145,7436429,

%U 7436429,22309287,22309287,646969323,3234846615,100280245065,200560490130,200560490130,200560490130

%N a(n) = denominator(Sum_{k=1..n} 1/P(k)), where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.

%C See A378678 for more details.

%H Amiram Eldar, <a href="/A378679/b378679.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) | A034386(n).

%t Denominator@ Accumulate[Table[1/FactorInteger[n][[-1, 1]], {n, 1, 34}]]

%o (PARI) lista(nmax) = {my(s = 1); print1(1, ", "); for(n = 2, nmax, f = factor(n); s += 1/f[#f~, 1]; print1(denominator(s), ", "));}

%Y Cf. A006530, A034386, A057155, A378678 (numerators).

%K nonn,easy,frac,new

%O 1,2

%A _Amiram Eldar_, Dec 03 2024