login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378551
a(n) = Sum_{k=0..n} 4^k * binomial(n/2+k-1,k) * binomial(n-1,n-k).
0
1, 2, 20, 206, 2200, 24062, 267500, 3009050, 34150000, 390265190, 4484762500, 51771831146, 599921125000, 6974108163778, 81297715937500, 949957147566086, 11123368187500000, 130487420114543110, 1533247106445312500, 18042303960492212810, 212590835968046875000
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/(1 - 4*x/(1-x))^(n/2).
MATHEMATICA
a[n_]:=SeriesCoefficient[ 1/(1 - 4*x/(1-x))^(n/2), {x, 0, n}]; Array[a, 21, 0] (* Stefano Spezia, Nov 30 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2+k-1, k)*binomial(n-1, n-k));
CROSSREFS
Cf. A372109.
Sequence in context: A037624 A077327 A173499 * A067636 A226301 A000906
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 30 2024
STATUS
approved