The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067636 Row 1 of table in A067640. 1
 2, 20, 210, 2352, 27720, 339768, 4294290, 55621280, 734959368, 9873696560, 134510127752, 1854385377600, 25828939188000, 362995937665200, 5141806953167250, 73343003232628800, 1052697272275341000, 15194039267330154000, 220410039466873456200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS J. L. Jacobsen and P. Zinn-Justin, A Transfer Matrix approach to the Enumeration of Knots, arXiv:math-ph/0102015, 2001-2002. FORMULA a(n) = (2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!). [adapted to offset 0 by Georg Fischer, May 29 2021] D-finite with recurrence: a(0) = 2, n*(n+2)*(n+3)*a(n) - 4*(n+1)*(2*n+1)*(2*n+3)*a(n-1) = 0 for n >= 1. - Georg Fischer, May 29 2021 a(n) ~ 2^(4*n + 6) / (Pi*n^2). - Vaclav Kotesovec, May 29 2021 MAPLE seq((2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!), n=0..30); # James A. Sellers, Feb 11 2002; adapted to offset 0 by Georg Fischer, May 29, 2021 MATHEMATICA RecurrenceTable[{n*(n+2)*(n+3)*a[n] - 4*(n+1)*(2*n+1)*(2*n+3)*a[n-1] == 0, a[0]==2}, a, {n, 0, 16}] (* Georg Fischer, May 29 2021 *) CROSSREFS Cf. A005568 (row 0), A067638 (row 2), A067639 (row 3). Sequence in context: A037624 A077327 A173499 * A226301 A000906 A308945 Adjacent sequences:  A067633 A067634 A067635 * A067637 A067638 A067639 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 05 2002 EXTENSIONS More terms from James A. Sellers, Feb 11 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 18:51 EDT 2021. Contains 345067 sequences. (Running on oeis4.)