login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378523
Dirichlet inverse of A332993, where A332993 is defined as a(1) = 1, and for n > 1, a(n) = n + a(A032742(n)), and A032742 is the largest proper divisor.
2
1, -3, -4, 2, -6, 14, -8, 0, 3, 20, -12, -14, -14, 26, 27, 0, -18, -17, -20, -18, 35, 38, -24, 4, 5, 44, 0, -22, -30, -109, -32, 0, 51, 56, 53, 34, -38, 62, 59, 4, -42, -137, -44, -30, -30, 74, -48, 0, 7, -27, 75, -34, -54, 6, 77, 4, 83, 92, -60, 146, -62, 98, -36, 0, 89, -193, -68, -42, 99, -199, -72, -28, -74, 116
OFFSET
1,2
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A332993(n/d) * a(d).
PROG
(PARI)
A332993(n) = if(1==n, n, n + A332993(n/vecmin(factor(n)[, 1])));
memoA378523 = Map();
A378523(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378523, n, &v), v, v = -sumdiv(n, d, if(d<n, A332993(n/d)*A378523(d), 0)); mapput(memoA378523, n, v); (v)));
CROSSREFS
Cf. also A378524.
Sequence in context: A344968 A324340 A046692 * A205769 A166108 A255768
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Nov 30 2024
STATUS
approved