login
A378444
a(n) is the number of divisors d of n such that A083345(d) is even, where A083345(n) is the numerator of Sum(e/p: n=Product(p^e)).
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 2, 2, 2, 1, 3, 3, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 2, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, 4
OFFSET
1,9
COMMENTS
Number of terms of A369002 that divide n.
LINKS
FORMULA
a(n) = Sum_{d|n} A369001(d).
a(n) = A000005(n) - A378445(n).
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A369001(n) = !(A083345(n)%2);
A378444(n) = sumdiv(n, d, A369001(d));
CROSSREFS
Inverse Möbius transform of A369001.
Cf. also A369257.
Sequence in context: A359307 A205154 A337772 * A371243 A378284 A025898
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 27 2024
STATUS
approved