login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378412
Irregular triangle read by rows: T(n,k) is the coefficient of x^k in the domination polynomial of the n X n grid graph (n>=1, A104519(n+2)<=k<=n^2).
1
1, 6, 4, 1, 10, 57, 98, 80, 36, 9, 1, 2, 40, 554, 2484, 5494, 7268, 6402, 3964, 1760, 556, 120, 16, 1, 22, 1545, 22594, 140304, 492506, 1126091, 1823057, 2204694, 2063202, 1528544, 908623, 435832, 168426, 51953, 12550, 2296, 300, 25, 1, 288, 20896, 478624
OFFSET
1,2
COMMENTS
Sum_{k=A104519(n+2)..n^2} T(n,k) = A133515(n).
T(n,n^2) = 1.
LINKS
Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], Aug 2024.
Eric Weisstein's World of Mathematics, Domatic Number.
Eric Weisstein's World of Mathematics, Dominating Set.
Eric Weisstein's World of Mathematics, Domination Number.
Eric Weisstein's World of Mathematics, Grid Graph.
EXAMPLE
D_1(x)=x
D_2(x)=6*x^2+4*x^3+x^4
D_3(x)=10*x^3+57*x^4+98*x^5+80*x^6+36*x^7+9*x^8+x^9
D_4(x)=2*x^4+40*x^5+554*x^6+2484*x^7+5494*x^8+7268*x^9+6402*x^10+3964*x^11+1760*x^12+556*x^13+120*x^14+16*x^15+x^16
CROSSREFS
Cf. A104519 (domination number of the (n-2) X (n-2) grid graph).
Cf. A133515 (number of dominating sets in the n X n grid graph).
Cf. A000290 (vertex count of the n X n grid graph = n^2).
Sequence in context: A365319 A343614 A086241 * A204023 A360984 A378418
KEYWORD
nonn,tabf,hard
AUTHOR
Eric W. Weisstein, Nov 25 2024
STATUS
approved