login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378411
G.f. A(x) satisfies A(x) = ( 1 + x * (1 + x*A(x)^(3/2)) )^2.
0
1, 2, 3, 8, 19, 50, 137, 380, 1088, 3152, 9270, 27576, 82794, 250700, 764454, 2345688, 7237318, 22438988, 69876356, 218456216, 685400835, 2157396738, 6810801959, 21559694364, 68417766207, 217617573110, 693655532081, 2215401956720, 7088605614314, 22720370822508
OFFSET
0,2
FORMULA
a(n) = 2 * Sum_{k=0..n} binomial(3*(n-k)+2,k) * binomial(k,n-k)/(3*(n-k)+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A019497.
PROG
(PARI) a(n, r=2, s=1, t=0, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A019497.
Sequence in context: A100342 A041281 A078343 * A148038 A326301 A148039
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 08 2024
STATUS
approved