login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378277
Denominators in a harmonic triangle, based on products of Fibonacci numbers.
0
1, 2, 2, 2, 3, 6, 2, 3, 10, 15, 2, 3, 10, 24, 40, 2, 3, 10, 24, 65, 104, 2, 3, 10, 24, 65, 168, 273, 2, 3, 10, 24, 65, 168, 442, 714, 2, 3, 10, 24, 65, 168, 442, 1155, 1870, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 4895, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 12816
OFFSET
1,2
COMMENTS
The harmonic triangle uses the terms of this sequence as denominators, numerators = 1.
The inverse of the harmonic triangle has entries -(Fibonacci(k+1))^2 for 1<=k<n (subdiagonals) and Fibonacci(n) * Fibonacci(n+1) (main diagonal).
Row sums of the harmonic triangle are 1.
Conjecture: Alt. row sums of the harmonic triangle are Fibonacci(n-2) / Fibonacci(n+1), where Fibonacci(-1) = 1.
FORMULA
T(n, k) = Fibonacci(n) * Fibonacci(n+1) if k = n, and Fibonacci(k) * Fibonacci(k+2) if 1 <= k < n.
Row sums are A110035(n) - 1 = -A110034(n+1).
G.f.: A(t, x) = x*t*(1 + t - x*t^2) / ((1 - t) * (1 + x*t) * (1 - 3*x*t + x^2*t^2)).
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n\ k : 1 2 3 4 5 6 7 8 9 10 11
===========================================================
1 : 1
2 : 2 2
3 : 2 3 6
4 : 2 3 10 15
5 : 2 3 10 24 40
6 : 2 3 10 24 65 104
7 : 2 3 10 24 65 168 273
8 : 2 3 10 24 65 168 442 714
9 : 2 3 10 24 65 168 442 1155 1870
10 : 2 3 10 24 65 168 442 1155 3026 4895
11 : 2 3 10 24 65 168 442 1155 3026 7920 12816
etc.
PROG
(PARI) T(n, k)=if(k==n, Fibonacci(n)*Fibonacci(n+1), Fibonacci(k)*Fibonacci(k+2))
CROSSREFS
Cf. A000045, A110034, A110035, A001654 (main diagonal), A059929 (subdiagonals).
Sequence in context: A268595 A299019 A347879 * A070610 A156820 A104346
KEYWORD
nonn,easy,tabl,frac,new
AUTHOR
Werner Schulte, Nov 21 2024
STATUS
approved