OFFSET
1,2
COMMENTS
The harmonic triangle uses the terms of this sequence as denominators, numerators = 1.
The inverse of the harmonic triangle has entries -(Fibonacci(k+1))^2 for 1<=k<n (subdiagonals) and Fibonacci(n) * Fibonacci(n+1) (main diagonal).
Row sums of the harmonic triangle are 1.
Conjecture: Alt. row sums of the harmonic triangle are Fibonacci(n-2) / Fibonacci(n+1), where Fibonacci(-1) = 1.
FORMULA
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n\ k : 1 2 3 4 5 6 7 8 9 10 11
===========================================================
1 : 1
2 : 2 2
3 : 2 3 6
4 : 2 3 10 15
5 : 2 3 10 24 40
6 : 2 3 10 24 65 104
7 : 2 3 10 24 65 168 273
8 : 2 3 10 24 65 168 442 714
9 : 2 3 10 24 65 168 442 1155 1870
10 : 2 3 10 24 65 168 442 1155 3026 4895
11 : 2 3 10 24 65 168 442 1155 3026 7920 12816
etc.
PROG
(PARI) T(n, k)=if(k==n, Fibonacci(n)*Fibonacci(n+1), Fibonacci(k)*Fibonacci(k+2))
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Nov 21 2024
STATUS
approved