login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 2/L, where L is the lemniscate constant (A062539).
4

%I #12 Nov 20 2024 17:41:19

%S 7,6,2,7,5,9,7,6,3,5,0,1,8,1,3,1,8,8,0,6,2,3,2,5,9,8,0,9,6,3,6,1,5,7,

%T 9,3,2,9,2,6,2,9,2,3,7,3,4,8,0,7,2,9,1,5,2,1,7,0,7,1,5,9,8,2,6,4,4,2,

%U 2,6,9,2,9,5,6,2,5,6,1,9,2,1,9,5,4,6,6,1,4,6

%N Decimal expansion of 2/L, where L is the lemniscate constant (A062539).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lemniscate_constant">Lemniscate constant</a> (includes this constant).

%H <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>.

%F Equals 1/A085565.

%F Equals 2*sqrt(2)*Gamma(3/4)^2/Pi^(3/2) = A010466*A175575.

%F Equals Product_{k >= 1} b(k), where b(1) = sqrt(1/2) and, for k >= 2, b(k) = sqrt(1/2 + (1/2)/b(k-1)).

%e 0.76275976350181318806232598096361579329262923734807...

%t First[RealDigits[Sqrt[8]*Gamma[3/4]^2/Pi^(3/2), 10, 100]]

%Y Cf. A010466, A062539, A085565, A175575.

%Y Cf. A377999, A378129, A378130, A378131, A378132.

%K nonn,cons,easy

%O 0,1

%A _Paolo Xausa_, Nov 17 2024