login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of terms of A048103 (numbers with no p^p divisors) less than or equal to n.
5

%I #11 Nov 13 2024 13:53:27

%S 0,1,2,3,3,4,5,6,6,7,8,9,9,10,11,12,12,13,14,15,15,16,17,18,18,19,20,

%T 20,20,21,22,23,23,24,25,26,26,27,28,29,29,30,31,32,32,33,34,35,35,36,

%U 37,38,38,39,39,40,40,41,42,43,43,44,45,46,46,47,48,49,49,50,51,52,52,53,54,55,55,56,57,58,58,58,59

%N a(n) is the number of terms of A048103 (numbers with no p^p divisors) less than or equal to n.

%C The number of terms in the range of A276086 that are <= n.

%H Antti Karttunen, <a href="/A377982/b377982.txt">Table of n, a(n) for n = 0..100000</a>

%F a(n) = Sum_{i=0..n} A359550(i).

%o (PARI)

%o up_to = 10000;

%o A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };

%o A377982list(up_to) = { my(v=vector(1+up_to), s=0); v[1] = s = A359550(0); for(n=1,up_to,s += A359550(n); v[1+n] = s); (v); };

%o v377982 = A377982list(up_to);

%o A377982(n) = v377982[1+n];

%Y Partial sums of A359550.

%Y Cf. A048103, A276086, A376411.

%Y Cf. also A377983.

%K nonn

%O 0,3

%A _Antti Karttunen_, Nov 13 2024