login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377149
a(n) = Sum_{k=0..floor(n/2)} binomial(k+3,3) * binomial(k,n-2*k)^2.
2
1, 0, 4, 4, 10, 40, 30, 180, 215, 580, 1316, 1960, 5719, 8624, 20420, 39536, 71985, 160584, 276664, 588180, 1099786, 2098480, 4201594, 7665724, 15266640, 28422684, 54252560, 103928876, 193166861, 371012360, 690296162, 1304353740, 2450895828, 4565652908
OFFSET
0,3
FORMULA
G.f.: (1-x^2-x^3) * ((1-x^2-x^3)^2 + 6*x^5) / ((1-x^2-x^3)^2 - 4*x^5)^(7/2).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(k+3, 3)*binomial(k, n-2*k)^2);
(PARI) a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=3, M=40, x='x+O('x^M), X=1-x^2-x^3, Y=5); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
CROSSREFS
Cf. A089627.
Sequence in context: A117881 A373101 A342989 * A161719 A343090 A161433
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 18 2024
STATUS
approved