login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377146
a(n) = Sum_{k=0..floor(n/2)} binomial(k+2,2) * binomial(k,n-2*k)^2.
2
1, 0, 3, 3, 6, 24, 16, 90, 105, 250, 561, 765, 2143, 3108, 6861, 12985, 22221, 47988, 79463, 161451, 293610, 535836, 1042188, 1835898, 3534766, 6399198, 11805756, 22021232, 39718497, 74193924, 134489713, 247165839, 453235266, 822748406, 1512078192, 2741606052
OFFSET
0,3
FORMULA
G.f.: ((1-x^2-x^3)^2 + 2*x^5) / ((1-x^2-x^3)^2 - 4*x^5)^(5/2).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(k+2, 2)*binomial(k, n-2*k)^2);
(PARI) a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=2, M=40, x='x+O('x^M), X=1-x^2-x^3, Y=5); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
CROSSREFS
Cf. A089627.
Sequence in context: A052560 A147836 A284710 * A019235 A222020 A230253
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2024
STATUS
approved