login
A376971
Number of polycubes of size n and symmetry class G (full symmetry).
7
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 3, 1, 0, 0, 1, 3, 1, 1, 0, 0, 4, 5, 4, 1, 0, 0, 6, 7, 4, 3, 0, 0, 8, 10, 11, 3, 0, 0, 12, 14, 8, 5, 1, 0, 22, 21, 21, 7, 0, 0, 34, 32, 20, 12, 2, 0, 50, 48, 48, 16, 1, 1, 76, 69, 48, 27, 8, 1
OFFSET
1,19
COMMENTS
See link "Counting free polycubes" for explanation of notation.
a(n) = 0 if and only if n is in the set {2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 21, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 65, 70, 71, 77}. (See link "Polycubes with full symmetry".) - Pontus von Brömssen, Oct 12 2024
Conjecture: For n >= 62, a(n) > a(n-1) if and only if n is a multiple of 6. - Pontus von Brömssen, Oct 20 2024
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..233
Pontus von Brömssen, Polycubes with full symmetry.
CROSSREFS
Cf. A000162, A038119, A142886 (polyominoes with full symmetry), A066288 (symmetric with rotations, group order 24).
Sequence in context: A350847 A026821 A377334 * A039964 A369453 A340655
KEYWORD
nonn
AUTHOR
John Mason, Oct 11 2024
EXTENSIONS
a(32)-a(36) from Pontus von Brömssen, Oct 14 2024
More terms from Pontus von Brömssen, Oct 20 2024
STATUS
approved