%I #29 Oct 20 2024 13:53:07
%S 1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,2,1,0,0,0,1,2,1,1,0,0,1,2,3,1,0,
%T 0,1,3,1,1,0,0,4,5,4,1,0,0,6,7,4,3,0,0,8,10,11,3,0,0,12,14,8,5,1,0,22,
%U 21,21,7,0,0,34,32,20,12,2,0,50,48,48,16,1,1,76,69,48,27,8,1
%N Number of polycubes of size n and symmetry class G (full symmetry).
%C See link "Counting free polycubes" for explanation of notation.
%C a(n) = 0 if and only if n is in the set {2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 21, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 65, 70, 71, 77}. (See link "Polycubes with full symmetry".) - _Pontus von Brömssen_, Oct 12 2024
%C Conjecture: For n >= 62, a(n) > a(n-1) if and only if n is a multiple of 6. - _Pontus von Brömssen_, Oct 20 2024
%H Pontus von Brömssen, <a href="/A376971/b376971.txt">Table of n, a(n) for n = 1..233</a>
%H Pontus von Brömssen, <a href="/A376971/a376971.png">Polycubes with full symmetry</a>.
%H John Mason, <a href="/A038119/a038119_1.pdf">Counting free polycubes</a>
%Y Cf. A000162, A038119, A142886 (polyominoes with full symmetry), A066288 (symmetric with rotations, group order 24).
%K nonn,changed
%O 1,19
%A _John Mason_, Oct 11 2024
%E a(32)-a(36) from _Pontus von Brömssen_, Oct 14 2024
%E More terms from _Pontus von Brömssen_, Oct 20 2024