login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376942
Irregular table read by rows: row(n) is the lexicographically earliest sequence of positive integers a(n,1), a(n,2), ... a(n,k) such that Sum_{m = n..(n+k-1)} 1/(m*a(n,m-n+1)) <= 1.
1
1, 1, 1, 2, 5, 100, 1, 1, 1, 1, 3, 53, 4947, 66072132, 1, 1, 1, 1, 1, 1, 23, 5270, 27999510, 1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400
OFFSET
1,4
COMMENTS
The terms in each row can grow rapidly in size, e.g., the 63rd and final term in row(25), 36333...86400, has 1728101 digits.
Conjecture: all rows have finite length.
LINKS
EXAMPLE
row(1) = 1 as 1/(1*1) = 1.
row(2) = 1, 1, 2, 5, 100 as 1/(2*1) + 1/(3*1) + 1/(4*2) + 1/(5*5) + 1/(6*100) = 1.
row(3) = 1, 1, 1, 1, 3, 53, 4947, 66072132 as 1/(3*1) + 1/(4*1) + 1/(5*1) + 1/(6*1) + 1/(7*3) + 1/(8*53) + 1/(9*4947) + 1/(10*66072132) = 1.
.
The table begins:
1;
1, 1, 2, 5, 100;
1, 1, 1, 1, 3, 53, 4947, 66072132;
1, 1, 1, 1, 1, 1, 23, 5270, 27999510;
1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440;
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400;
.
.
.
See the attached file for rows up to n = 25.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Scott R. Shannon, Oct 12 2024
STATUS
approved