login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular table read by rows: row(n) is the lexicographically earliest sequence of positive integers a(n,1), a(n,2), ... a(n,k) such that Sum_{m = n..(n+k-1)} 1/(m*a(n,m-n+1)) <= 1.
1

%I #22 Nov 08 2024 08:38:02

%S 1,1,1,2,5,100,1,1,1,1,3,53,4947,66072132,1,1,1,1,1,1,23,5270,

%T 27999510,1,1,1,1,1,1,1,2,4,28,8851,1395426533,3665346274452116372,

%U 53925647181443925794153448868309082440,1,1,1,1,1,1,1,1,1,3,7,95,54570,3932969040,1,1,1,1,1,1,1,1,1,1,1,6,45,2685,8685204,98388241169400

%N Irregular table read by rows: row(n) is the lexicographically earliest sequence of positive integers a(n,1), a(n,2), ... a(n,k) such that Sum_{m = n..(n+k-1)} 1/(m*a(n,m-n+1)) <= 1.

%C The terms in each row can grow rapidly in size, e.g., the 63rd and final term in row(25), 36333...86400, has 1728101 digits.

%C Conjecture: all rows have finite length.

%H Scott R. Shannon, <a href="/A376942/b376942.txt">Table of n, a(n) for n = 1..797</a>

%H Scott R. Shannon, <a href="/A376942/a376942.txt">Unflattened table for n = 1..25</a>.

%e row(1) = 1 as 1/(1*1) = 1.

%e row(2) = 1, 1, 2, 5, 100 as 1/(2*1) + 1/(3*1) + 1/(4*2) + 1/(5*5) + 1/(6*100) = 1.

%e row(3) = 1, 1, 1, 1, 3, 53, 4947, 66072132 as 1/(3*1) + 1/(4*1) + 1/(5*1) + 1/(6*1) + 1/(7*3) + 1/(8*53) + 1/(9*4947) + 1/(10*66072132) = 1.

%e .

%e The table begins:

%e 1;

%e 1, 1, 2, 5, 100;

%e 1, 1, 1, 1, 3, 53, 4947, 66072132;

%e 1, 1, 1, 1, 1, 1, 23, 5270, 27999510;

%e 1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400;

%e .

%e .

%e .

%e See the attached file for rows up to n = 25.

%Y Cf. A001008, A002805, A002387, A375781, A376056, A269993.

%K nonn,tabf

%O 1,4

%A _Scott R. Shannon_, Oct 12 2024