login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376867
Reduced numerators of Newton's iteration for 1/sqrt(2), starting with 1/2.
3
1, 5, 355, 94852805, 1709678476417571835487555, 9994796326591347130392203807311551183419838794447313956622219314498503205
OFFSET
0,2
COMMENTS
An explicit formula for a(n) is not known, although it arises from a recurrence and the corresponding denominators are simply 2^(3^n) = A023365(n+1).
Next term is too large to include.
LINKS
X. Gourdon and P. Sebah, Pythagoras' Constant.
FORMULA
a(n) is the reduced numerator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2.
Limit_{n -> oo} a(n)/A023365(n+1) = 1/sqrt(2) = A010503.
a(n+1) = a(n)*(3*2^(2*3^n-1)-a(n)^2). - Chai Wah Wu, Oct 11 2024
EXAMPLE
a(1) = 5 because b(1) = (1/2)*(3/2 - 1/4) = 5/8.
1/2, 5/8, 355/512, 94852805/134217728, ... = a(n)/A023365(n+1).
MAPLE
b:= proc(n) b(n):= `if`(n=0, 1/2, b(n-1)*(3/2-b(n-1)^2)) end:
a:= n-> numer(b(n)):
seq(a(n), n=0..5); # Alois P. Heinz, Oct 07 2024
MATHEMATICA
a[0]=1/2; a[n_]:=a[n-1](3/2-a[n-1]^2); Numerator[Array[a, 6, 0]] (* Stefano Spezia, Oct 15 2024 *)
PROG
(Python)
from itertools import count, islice
def A376867_gen(): # generator of terms
p = 1
for k in count(0):
yield p
p *= ((3<<((3**k<<1)-1))-p**2)
A376867_list = list(islice(A376867_gen(), 6)) # Chai Wah Wu, Oct 11 2024
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Steven Finch, Oct 07 2024
STATUS
approved