OFFSET
1,2
COMMENTS
The sequence A376180 generates infinite cyclic group under composition. The identity element is A000027.
Each column can be regarded as a triangular array read by rows. Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. The length of the row number n in each column is the n-th pentagonal number, A000326(n+1).
Each column is an intra-block permutation of the positive integers.
LINKS
Boris Putievskiy, Table of n, a(n) for n = 1..9870
Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
Eric Weisstein's World of Mathematics, Polygonal Number.
FORMULA
EXAMPLE
Table begins:
k = 1 2 3 4 5
-----------------------------------
n = 1: 1, 1, 1, 1, 1, ...
n = 2: 4, 3, 5, 6, 2, ...
n = 3: 5, 6, 2, 4, 3, ...
n = 4: 3, 5, 6, 2, 4, ...
n = 5: 6, 2, 4, 3, 5, ...
n = 6: 2, 4, 3, 5, 6, ...
Column k = 1 contains the start of A376180.
Ord(T(1,1),T(2,1), ... T(6,1)) = 5, ord(T(1,1),T(2,1), ... T(18,1)) = 10, ord(T(1,1),T(2,1), ... T(40,1)) = 60, ord(T(1,1),T(2,1), ... T(75,1)) = 420, ord(T(1,1),T(2,1), ... T(126,1)) = 7140, where ord is the order of the permutation.
MATHEMATICA
a[n_]:=Module[{L, R, P, Result}, L=Ceiling[Max[x/.NSolve[x^2 (x+1)-2 n==0, x, Reals]]]; R=n-((L-1)^2)*L/2; P=Which[OddQ[R]&&OddQ[L*(3*L-1)/2], (L*(3*L-1)/2-R+1+1)/2, OddQ[R]&&EvenQ[L*(3*L-1)/2], (R+L*(3*L-1)/2+1)/2, EvenQ[R]&&OddQ[L*(3*L-1)/2], Ceiling[(L*(3*L-1)/2+1)/2]+R/2, EvenQ[R]&&EvenQ[L*(3*L-1)/2], Ceiling[(L*(3*L-1)/2+1)/2]-R/2];
Result=P+(L-1)^2*L/2; Result] (*A376180*)
composeSequence[a_, n_, k_]:=Nest[a, n, k]
Nmax=5; T=Table[composeSequence[a, n, k], {n, 1, Nmax}, {k, 1, Nmax}]; T
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Dec 22 2024
STATUS
approved