login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376749
Number of non-isomorphic colorings of a toroidal n X n grid using exactly four swappable colors.
4
0, 1, 874, 10741819, 1870851589562, 5465007068038102643, 269482732023591671431784330, 221537990355601030571170905795094315, 3007205014171762201565124875608675533096268906, 669557518440386985607930852942771727146772232484581602227, 2433673642945425535196140161775877796522974318753784273286700783313050
OFFSET
1,3
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
FORMULA
a(n) = (1/(n^2*4!))*(Sum_{sigma in S_4} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..4} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
CROSSREFS
Main diagonal of A294793.
Sequence in context: A045258 A252219 A252212 * A038658 A065700 A297511
KEYWORD
nonn
AUTHOR
Marko Riedel, Oct 03 2024
STATUS
approved