login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376693
a(n) is the first k such that if x(1) = k and x(i+1) = A062028(x(i)), x(1) to x(n) are all semiprimes but x(n+1) is not.
0
1, 4, 15, 22, 39, 33, 291, 23174, 90137, 119135, 1641362, 1641337, 7113362, 471779113
OFFSET
0,2
EXAMPLE
a(4) = 39 because 39 = 3 * 13 is a semiprime, A062028(39) = 39 + 3 + 9 = 51 = 3 * 17 is a semiprime, A062028(51) = 51 + 5 + 1 = 57 = 3 * 19 is a semiprime, A062028(57) = 57 + 5 + 7 = 69 = 3 * 23 is a semiprime, but A062028(69) = 69 + 6 + 9 = 84 = 2^2 * 3 * 7 is not a semiprime.
MAPLE
f:= proc(n) local x, i;
x:= n;
for i from 0 do
if numtheory:-bigomega(x) <> 2 then return i fi;
x:= x + convert(convert(x, base, 10), `+`);
od
end proc:
V:= Array(0..12): count:= 0:
for i from 1 while count < 13 do
v:= f(i);
if v <= 12 and V[v] = 0 then V[v]:= i; count:= count+1 fi
od:
convert(V, list);
PROG
(PARI) a(n) = if(n==0, return(1)); for(k=1, oo, if(bigomega(k) == 2, my(c=1, t=k+sumdigits(k)); while(bigomega(t) == 2, c += 1; t += sumdigits(t)); if(c == n, return(k)))); \\ Daniel Suteu, Nov 03 2024
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Robert Israel, Oct 01 2024
EXTENSIONS
a(13) from Daniel Suteu, Nov 03 2024
STATUS
approved