login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376684
Antidiagonal-sums of the absolute value of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).
13
1, 3, 4, 9, 12, 27, 50, 109, 224, 471, 942, 1773, 3118, 4957, 7038, 9373, 16256, 55461, 150622, 346763, 718972, 1377101, 2462220, 4114987, 6387718, 9112455, 12051830, 17160117, 40946860, 134463917, 349105370, 800713921, 1684145408, 3297536923, 6040907554
OFFSET
0,2
EXAMPLE
The fourth antidiagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 12.
MATHEMATICA
nn=12;
t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1, !PrimeQ[#]&]&, 1, 2*nn], k], nn], {k, 0, nn}];
Total/@Table[Abs[t[[j, i-j+1]]], {i, nn}, {j, i}]
CROSSREFS
For the modern primes (A000040) we have A376681, absolute version of A140119.
For firsts instead of row-sums we have A030016, modern A007442.
These are the antidiagonal-sums of the absolute value of A376682 (modern A095195).
This is the absolute version of A376683.
For first zero-positions we have A376855, modern A376678.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, first differences A075526.
Sequence in context: A034421 A353306 A211221 * A029448 A249179 A103014
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 15 2024
STATUS
approved