login
A376683
Antidiagonal-sums of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).
16
1, 3, 4, 9, 6, 27, -20, 109, -182, 471, -868, 1737, -2872, 4345, -4700, 1133, 14060, -55275, 150462, -346093, 717040, -1369351, 2432872, -4002905, 5964846, -7524917, 6123130, 4900199, -40900410, 134309057, -348584552, 798958881, -1678213106, 3277459119
OFFSET
0,2
EXAMPLE
The fourth anti-diagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 6.
MATHEMATICA
nn=12;
t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1, !PrimeQ[#]&]&, 1, 2*nn], k], nn], {k, 0, nn}];
Total/@Table[t[[j, i-j+1]], {i, nn}, {j, i}]
CROSSREFS
The modern version (for A000040 instead of A008578) is A140119.
The absolute version is A376681.
Antidiagonal-sums of A376682 (modern version A095195).
For composite instead of noncomposite we have A377033.
For squarefree instead of noncomposite we have A377038, nonsquarefree A377046.
A000040 lists the modern primes, differences A001223, second A036263.
A008578 lists the noncomposites, first differences A075526.
Sequence in context: A054791 A167531 A344195 * A356541 A062319 A285265
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 15 2024
STATUS
approved